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Abstract: - The paper deals with design of controllers for time delay systems having integrative or unstable 
properties. The proposed method is based on two methods of time delay approximations. The control system 
with two feedback controllers is considered. For design of controllers, the polynomial approach is used. 
Resulting continuous-time controllers obtained via polynomial equations and the LQ control technique ensure 
asymptotic tracking of step references as well as step disturbances attenuation. Simulation results are presented 
to illustrate the proposed method. 
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1 Introduction 
Different classes of technological processes include 
a time delay in their input-output relations. Plants 
with a time delay cannot often be controlled by 
conventional controllers designed without 
consideration of the dead-time. The control 
responses using such controllers are often of a poor 
quality or even can tend to destabilize the closed-
loop system. 
A part of time delay processes can  be unstable or 
having integrating properties. Typical examples of 
such processes are e.g. pumps, liquid storing tanks, 
distillation columns and some types of chemical or 
biochemical reactors. A control of such processes 
represents a difficult problem especially for 
processes containing also other stable or unstable 
parts with the integrative term. 
For control design of unstable and also integrating 
processes several ways exist. Some methods are 
based on several modifications of the Smith 
predictor which was originally developed for stable 
time delay systems. Such modified Smith predictors 
were published e.g. in [1] – [4]. Other group of 
methods employ PID control strategies [5] – [8], the 
robust control methods [9] and [10] or methods 
based on the ring of quasipolynomials, e.g. [11]. A 
solution of differential equations describing the time 
delay systems can be found e.g. in [12]. Other 
simulation possibilities are described e.g. in [13]. 
This paper presents one method of the controller 

design for unstable and integrating time delay 
systems and also for its combination with a stable or 
an unstable first order system. The presented 
procedure is based on approximations of the time 
delay term by the first order Taylor numerator 
expansion (TNE) and by the first order Padé 
approximation (PA). The control system with two 
feedback controllers is considered, see, e.g. [14], 
[15]. The controllers are derived using the 
polynomial approach published e.g. in [16]. For 
tuning of controller parameters, the pole assignment 
method exploiting the LQ control technique is used, 
see, e.g. [17]. The resulting proper and stable 
controllers obtained via polynomial Diophantine 
equations and spectral factorization techniques 
ensure the asymptotic tracking of step references as 
well as step disturbances attenuation. 
The structures of developed controllers together 
with analytically derived formulas for computation 
of their parameters are presented for five typical 
plants of time delay systems: the unstable first order 
time delay system (UFOTDS), the unstable second 
order time delay system (USOTDS), integrating 
time delay system (ITDS), and, the stable and 
unstable first order plus integrating time delay 
system (SFOPITDS, UFOPITDS). 
Presented simulation results obtained by both 
approximations document usefulness of the 
proposed method providing stable control responses 
of a good quality.  
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2 Approximate Transfer Functions 
The transfer functions in the sequence UFOTDS, 
USOTDS, ITDS, SFOPITDS and UFOPITDS have 
forms 
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2.1 TN expansion 
In the first case, the time delay terms in (1) – (4) are 
approximated by the TN expansion 

 1d s
de s−τ ≈ − τ . (5) 

Then, approximate transfer functions relating to (1) 
– (4) have forms 
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for the USOTDS, 
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for the SFOPITDS and UFOPITDS. 
 
2.2 Padé approximation 
In the second case, the time delay terms in (1) – (4) 
are approximated by the by the first order Padé 
approximation 
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Now, approximate transfer functions in the same 
sequence take forms  
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for the USOTDS, 
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for the SFOPITDS and UFOPTDS. 
 
 Remark: For the UFOTDS and the UFOPITDS the 
conditions dτ ≠ τ  in (6) and (12), 1dτ ≠ τ  in (8), 
and, 2dτ ≠ τ  in (15) and (21) must be fulfilled. 
 
All approximate transfer functions have the form 

 ( )( )
( )A

b sG s
a s
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where b and a are coprime polynomials in s that 
fulfill the inequality deg degb a≤ . 
 
3  Control Design 
The control system with two feedback controllers is 
depicted in Fig.1.   
 

 - -

 u0 

 v2  v1 

  u  e  w  y 
 R 

 Q 

GA 

 
Fig.1. Control system. 
 
In the  scheme,  w is the reference signal,  v1, v2  are 
input and output disturbances, e is the tracking error, 
u0 is the controller output, y is the controlled output 
and  u is the control input.  The reference w and 
both disturbances v1 and v2  are considered  to be 
step functions with transforms 
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The transfer function GA  represents a proper 
approximate transfer function in the general form 
(23). 
The transfer functions of controllers are 

 ( )( )
( )
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where , andq r p are coprime polynomials in s. 
 
3.1  Application  of  Polynomial Method 
The  controller  design   described  in   this  section  

follows from the polynomial approach. The general 
conditions required to govern the control system 
properties are formulated as follows: 

♦ Strong stability of the control system (in 
addition to the control system stability, also the 
stability of a controller is required). 

♦ Internal properness of the control system. 
♦ Asymptotic tracking of the reference. 
♦ Attenuation of disturbances. 

The procedure to derive admissible controllers can 
be carried out as follows: 

Transforms of the controlled output and the tracking 
error take the form (for simplification, the argument 
s is in some equations omitted) 
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where 
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is the characteristic polynomial with roots as poles 
of the closed-loop. 
Establishing the polynomial t as 

 ( ) ( ) ( )t s r s q s= +  (29) 

and substituting (29) into (28), the condition of the 
control system stability is ensured when 
polynomials p  and t are given by a solution of the 
polynomial Diophantine equation 

 ( ) ( ) ( ) ( ) ( )a s p s b s t s d s+ =  (30) 

with a stable polynomial d on the right side. 
With regard to (24), asymptotic tracking and both 
disturbances attenuation are provided by divisibility 
of both terms a p bq+  and p  in (27) by s. This 
condition is fulfilled for polynomials p and q in the 
form 

 ( ) ( )p s s p s= ,  ( ) ( )q s s q s= . (31) 

Subsequently, the transfer functions of controllers 
take forms 
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s p s

= . (32) 

A stable polynomial p(s) in denominators of (32) 
ensures the stability of ontrollers.  
The control system satisfies the condition of internal 
properness when the transfer functions of all its 

WSEAS TRANSACTIONS on SYSTEMS Petr Dostál, Vladimír Bobál, Zdeněk Babík

E-ISSN: 2224-2678 588 Issue 10, Volume 11, October 2012



 
 

     

 

components are proper. Consequently, the degrees 
of polynomials q and r must fulfill inequalities 

 deg degq p≤ ,  deg deg 1r p≤ + . (33) 

Now, the polynomial t can be rewritten to the form 

 ( ) ( ) ( )t s r s s q s= + . (34) 

Taking into account solvability of (30) and 
conditions (33), the degrees of polynomials in (30) 
and (32) can be easily derived as 

 deg deg degt r a= = , deg deg 1q a= −  
 (35) 

deg deg 1p a= − ,  deg 2degd a= . 

Denoting deg a = n, polynomials t, r and q have the 
form 
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and among of their coefficients equalities  

 0 0r t= ,  i i ir q t+ =  for 1, ... ,i n=  (37) 

hold. Since by a solution of the polynomial equation 
(30) only coefficients ti can be calculated, unknown 
coefficients ri and qi can be obtained by a choice of 
selectable coefficients 0,1iβ ∈  such that 

 i i ir t= β ,  (1 )i i iq t= − β  for 1, ... ,i n= . (38) 

The coefficients βi distribute a weight between 
numerators of transfer functions Q and R. With 
respect to the transform (26), it may be expected 
that higher values of βi speed up control responses 
to step references. 

Remark: If 1iβ = for all i, the control system in  
Fig. 1 demotes to the 1DOF control configuration. If 

0iβ = for all i and the reference and both 
disturbances are step functions, the control system 
corresponds to the 2DOF control configuration. 

The controller parameters then follow from 
solutions of the polynomial equation (30) and 
depend upon coefficients of polynomial d. The next 
problem here means to find a stable polynomial d 
that enables to obtain the acceptable stabilizing and 
stable controllers.  
 
3.2 Pole Assignment 
In this paper, the polynomial d is considered as a 
product of two stable polynomials g and m in the 
form 

 ( ) ( ) ( )d s g s m s=  (39) 

where the polynomial g is a monic form of the 
polynomial h obtained by spectral factorization 

 [ ] [ ]( ) ( ) ( ) ( ) ( ) ( )s a s s a s b s b s h s h s∗ ∗ ∗ϕ + =  (40) 

where ϕ > 0 is the weighting coefficient. 
 
Remark: In the LQ control theory, the spectral 
factorization (40) is used in a procedure of 
minimization of the quadratic cost function 
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where ( )e t  is the tracking error and ( )u t is the 
control input derivative. 
 
The polynomials h and derived formulas for their 
parameters calculation have forms 
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the Padé approximation where 
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and 0 0a =  for both SFOPITDS and UFOPITDS. 
For calculation of d, polynomials (42), (44) and (46) 
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are arranged to monic forms g(s) (with unit 
coefficients by the highest power of s) such that  

 0,1,... ,j j ng h h j n= =  (48) 

where degn h= . 
The second polynomial m ensuring properness of 
the controller is chosen as 

 ( ) 1m s =  (49) 

for both UFOTDS and ITDS with the TN  
expansion, 

 2( )
d
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for both UFOTDS and ITDS with the Padé 
approximation, 
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for the USOTDS with the Padé approximation, 
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expansion, and,  
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for both UFOPITDS and SFOPITDS with the Padé 
approximation. 
The above forms of m lead to the polynomial d with 
coefficients containing only the selectable parameter 
ϕ with all other coefficients depending on 
parameters of polynomials b and a. Consequently, a 
location of the closed loop poles can be affected by 
the selectable parameter ϕ. 
The transfer functions of controllers with degrees of 
polynomials in their numerators and denominators 
given by (35) are 
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for both UFOTDS and ITDS with the Padé 
approximation, and, for the USOTDS, SFOPITDS 
and UFOPITDS with the TN expansion. Further, 
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for the USOTDS, SFOPITDS and UFOPITDS with 
the Padé approximation. 
In all cases, the parameters q in numerators of 
controllers are computed from parameters t 
according to (37). 
For clarity, derived formulas for computation of 
parameters p0 and t the controller derived for all 
considered cases together with conditions of the 
controllers’ stability are introduced in the form of 
tables. 
 
Table 1. Controller parameters for UFOTDS 

TN expansion 
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Table 2. Controller parameters for ITDS 

TN expansion 
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WSEAS TRANSACTIONS on SYSTEMS Petr Dostál, Vladimír Bobál, Zdeněk Babík

E-ISSN: 2224-2678 590 Issue 10, Volume 11, October 2012



 
 

     

 

0 2 1 0(2 )
4
d

dp g g gτ
= + + τ ,  0 0 0

1t r g
K

= =  

1 1 0
1 ( )dt g g
K

= + τ ,  2 1 0(2 )
4

d
dt g g

K
τ

= + τ  

p0 > 0 for all τd 

 
Table 3. Controller parameters for USOTDS 
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2

1 2 1 0
0

1

( ) 1d d

d

g g gp τ + τ + τ +
=

τ − τ
 

1
0 0t g

K
τ= ,  [ ]1 0 1 1 1 2 0

1 ( )dt p g g
K

= + τ + τ τ + τ  

1 2
2 0 2

1

1 1

d
t p g

K
⎡ ⎤τ τ= − −⎢ ⎥τ τ⎣ ⎦

 

p0 > 0 for τd < τ1 

Padé approximation 

3 1 2 1 0
1

0
1

22 2
2

2

d
d

d

g g g g
p

⎡ ⎤τ⎛ ⎞+ τ + τ + +⎜ ⎟⎢ ⎥ τ⎝ ⎠⎣ ⎦=
τ − τ

 

1 3
1

1p g= +
τ

 

 1
0 0t g

K
τ= , ( )1 0 1 1 2 0

1 ( )dt p g g
K
⎡ ⎤= + τ + τ + τ⎣ ⎦  

1 2
2 1 2 0

1 4

d
t p

K
⎡⎛ ⎞τ τ= + τ − τ −⎢⎜ ⎟τ⎢⎝ ⎠⎣

 

2
3 1 2 1 2 1

1

4 11
d

g g g
⎤⎛ ⎞⎛ ⎞τ− + + τ + − τ τ ⎥⎜ ⎟⎜ ⎟τ τ ⎥⎝ ⎠⎝ ⎠ ⎦

 

2
3 1 0 2 3

1

1( )t p g g
K
⎡ ⎤τ= τ − − −⎢ ⎥τ⎣ ⎦

 

p0 > 0 for τd < 2τ1 

 

Table 4. Controller parameters for SFOPITDS 
TN expansion 
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Table 5. Controller parameters for UFOPITDS 
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 4  Simulation Results 
All simulations were performed by MATLAB-
Simulink tools. In all cases, the unit step reference w 
was introduced at the time t = 0 and the step 
disturbances v1 and v2 were subsequently injected 
after settling of the control responses.  
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4.1  UFOTDS 
The parameters in the transfer function (1) has been 
chosen as K = 1 and τ = 4. 
The responses in Fig.2 document applicability of the 
TNE for the UFOTDS with a small value of τd. 
Further, the responses illustrate necessity of a higher 
value of ϕ to achieving of an aperiodic character of 
responses. Smaller values of ϕ lead to their 
oscillatory character. An effect of the parameter β1 
can be seen in Fig.3. Its increasing value speeds the 
control but causes expressive overhoots. 
A preference of the PA in comparison with the TN 
is evident from the controlled output responses in 
Fig.4 computed under the same conditions. 
Moreover, the PA enables a use also for higher 
values of τd as shown in Fig.5. 
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Fig.2. UFOTDS - TNE: Controlled output for  various ϕ  

(τd = 2, β1 = 0, v1 = - 0.2, v2 = 0.1). 
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Fig.3. UFOTDS - TNE: Controlled output for various β1 

(τd = 2, ϕ = 100, v1 = - 0.2, v2 = 0.1). 
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Fig.4.  UFOTDS - PA: Controlled output for various ϕ 

(τd = 2, β1, 2 = 0, v1 = - 0.2, v2 = 0.1). 
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Fig.5.  UFOTDS - PA: Controlled output for various ϕ 

(τd = 4, β1, 2 = 0, v1 = - 0.2, v2 = 0.1). 
 
4.2 USOTDS 
The parameters in the transfer function (2) were 
chosen as K = 1, τ1 = 4, τ2 = 2. 
Also in this case, an application of the TNE is 
possible for smaller values of the time delay and for 
higher values of ϕ. A higher value of τd needs a use 
of the PA. The simulation results can be seen in 
Figs.6 and 7. 
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Fig.6. USOTDS - TNE: Controlled output for various ϕ 

(τd = 2, β1, 2 = 0, v1 = - 0.2, v2 = 0.1). 
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Fig.7. USOTDS - PA: Controlled output for various α  

(τd = 3 , β1, 2, 3 = 0, v1 = - 0.2, v2 = 0.1). 
 
The responses in Fig.8 demonstrate their high 
sensitivity to parameters β. Evidently, on behalf of 
acceleration of the control, only small values β 
should be chosen. Their higher values lead to 
expresive overshoots at the start of the tracking 
interval. 
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Fig.8. USOTDS - PA: Controlled output for various β1, 

β2 (τd = 3, ϕ = 100, β3 = 0, v1 = - 0.2, v2 = 0.1). 
 
4.3 ITDS 
In this case, the parameter in (3) has been chosen as 
K = 0.2. 
The responses in Fig.9 document applicability of the 
TNE for the ITDS with smaller values of τd.  There 
is not a significant difference in comparison with 
utilization of the PA as shown in Fig.10. Here, also 
a selection of the parameter ϕ is not very important.  
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Fig.9.  ITDS - TNE: Controlled output for various ϕ 

(τd = 2, β1 = 0, v1 = - 0.2, v2 = 0.2). 
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Fig.10.  ITDS - PA: Controlled output for various ϕ 

(τd = 2, β1 = 0, v1 = - 0.2, v2 = 0.2). 
 
An effect of the parameter β1 on the controlled 
output responses can be seen in Fig.11. A 
reasonable choice of this parameter can accelerate 
the control responses keeping their apperiodic 
character.  
A difference between both approximations appears 

for higher values of  τd as it can be seen in Figs.12, 
13 and 14. There, a priority of the PA is evident.  It 
is also clear that a higher value of τd requires a use 
of a higher value of ϕ. 
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Fig.11. ITDS - TNE: Controlled output for various β1   

(τd = 5, ϕ = 25, v1 = - 0.4, v2 = 0.2). 
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Fig.12. ITDS - TNE: Controlled output for various ϕ  

(τd = 8, β1 = 0, v1 = - 0.2, v2 = 0.2). 
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Fig.13. ITDS - PA: Controlled output for various ϕ  

(τd = 8, β1 = β2 = 0, v1 = - 0.2, v2 = 0.2). 
 

 
4.4 SFOPITDS 
For this model (and, also for the UFOPITDS), the 
parameters in (2) have been chosen as K = 0.2 and τ 
= 4. The controlled output responses for various ϕ  
are shown in Figs.15 and 16, a comparison between 
application of the TNE and PA can be seen in 
Fig.17. The presented results clearly prove a better 
control quality obtained by the PA. It should be 
noted that for both SFOPITDS and UFOPITDS zero 
parameters β were chosen equivalent to the 2DOF 
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control structure. This choice gave best control 
results. 
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Fig.14. ITDS – Comparison of controlled outputs for 

TNE and PA (τd = 8, ϕ = 100, β1 = β2 = 0,  
v1 = - 0.2, v2 = 0.2). 
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Fig.15. SFOPITDS - TNE: Controlled output for various 

ϕ (τd = 5, v1 = - 0.2, v2 = 0.1). 
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Fig.16. SFOPITDS - PA: Controlled output for various ϕ     

(τd = 5, v1 = - 0.1, v2 = 0.1). 
 
4.5 UFOPITDS 
With regard to a presence of both integrating and 
unstable parts, the UFOPITDSs belong to hardly 
controllable systems. However, the control 
responses in Fig.18 document usability of both TNE 
and PA for smaller value of τd. Higher values of τd 
require a selection of higher values of ϕ as shown 
for the PA in Fig.19 However, for higher values of 
ϕ, the TNE is unsuitable, as documented  in Fig.20. 
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Fig.17. SFOPITDS - Comparison of controlled outputs 

for TNE and PA (τd = 8, ϕ = 100, v1 = - 0.1, 
 v2 = 0.2) 
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Fig.18. UFOPITDS - Comparison of controlled outputs 

for TNE and PA (τd = 2, ϕ = 400, v1 = - 0.05,  
v2 = 0.1). 
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Fig.19. UFOPITDS - PA: Controlled output for various ϕ 

(τd = 3, v1 = - 0.05, v2 = 0.1). 
 
 
5 Conclusions 
The problem of control design for unstable and 
integrating time delay systems has been solved and 
analysed. The proposed method is based in two 
ways of the time delay approximation. The 
controller   design  uses   the    polynomial synthesis   
and   the controller setting employs the results of the 
LQ control theory. The presented procedure 
provides satisfactory control responses in the 
tracking of a step reference as well as in step 
disturbances attenuation. The presented results have 
demonstrate the usability of the method and the 
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control of a good quality also for relatively high 
ratio of the time delay to the time constant. The 
procedure makes possible a tuning of the controller 
parameters by two types of selectable parameters. 
Using derived formulas, the controller parameters 
can be automatically computed. From this reason, 
the method could also be used for an adaptive 
control. 
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Fig.20. UFOPITDS – Comparison of controlled outputs 

for TNE and PA (τd = 3, ϕ = 2500, v1 = - 0.05, 
 v2 = 0.1). 
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